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We introduce and analyze a simple probabilistic cellular automaton which
emulates the flow of cars along a highway. Our Traffic CA captures the essen-
tial features of several more complicated algorithms, studied numerically by
K. Nagel and others over the past decade as prototypes for the emergence of
traffic jams. By simplifying the dynamics, we are able to identify and precisely
formulate the self-organized critical evolution of our system. We focus here
on the Cruise Control case, in which well-spaced cars move deterministically at
maximal speed, and we obtain rigorous results for several special cases. Then we
introduce a symmetry assumption that leads to a two-parameter model,
described in terms of acceleration (a) and braking (b) probabilities. Based on
the results of simulations, we map out the (a, b) phase diagram, identifying
three qualitatively distinct varieties of traffic which arise, and we derive rigorous
bounds to establish the existence of a phase transition from free flow to jams.
Many other results and conjectures are presented. From a mathematical per-
spective, Traffic CA provides local, particle-conserving, one-dimensional
dynamics which cluster, and converge to a mixture of two distinct equilibria.

KEY WORDS: Traffic jam; conservative flow; interacting particle system; phase
separation; ergodic.

1. INTRODUCTION

This study is motivated primarily by the simulations of K. Nagel and his
coworkers on the emergence of traffic jams. Over the past decade, first in
Germany and then at Los Alamos National Labs, the foundations of a
theory of traffic have been investigated in more than a dozen papers (e.g.,
[Kra], [Nag1], [NP], [SSNI], and the recent surveys [KNW] and [CSS]



which include many additional references). The first cellular automaton
with realistic traffic jam behavior was introduced by Nagel and
Schreckenberg [NS] in 1992. It was used to model the flow of a single lane
of cars as a directed, conservative particle system. In the study of that
model and its relatives, metaphors and methods of statistical physics were
used to argue that jams represent a kind of self-organized state which arises
when the traffic reaches a critical density. A consistent paradigm seems to
govern the various algorithms, as summarized in [KNW]:

... different models of traffic flow display similar mechanisms that lead to
traffic flow breakdown or recovery after breakdown, respectively. It can be
assumed that the mechanisms are mathematically identical.

Subsequent work at Los Alamos has applied the same basic principles
to increasingly complex traffic networks, from two-lane highways with
passing [NWWS] all the way to car-level micro-simulations of Dallas
and Portland [Nag2]. A colorful account of this research appeared in the
August 5, 1999 Washington Post. Staff writer Alan Sipress [Sip] sum-
marizes the most basic findings thus:

Scientists have identified ‘‘phase changes’’ in traffic, similar to the sudden
transitions that occur when steam turns to water or water to ice. Understanding the
timing and dynamics of phase changes in traffic, like those in nature, poses a
challenge for physicists. ...

Phase 1. When traffic is light, motorists drive much as they like, moving at the
speed they want and changing lanes easily. Motorists are comparable to steam par-
ticles with great freedom of movement.

Phase 2. As the road becomes crowded, motorists suddenly lose much of their
freedom and are forced to drive as part of the overall traffic stream, moving at the
speed of the general flow and often unable to change lanes. This phase, similar to
water, has been called ‘‘synchronized’’ flow.

Phase 3. In heavy congestion, traffic is stop-and-go. Like water freezing into
ice, the motorists are stuck in place.

Intrigued by the phenomenology of real-world traffic and the simula-
tions of Nagel and others, we set out to find the simplest spatial interac-
tions which give evidence of the three phases Sipress describes. We consider
only one-lane systems; a recent study [RT] in Nature finds that the effects
of passing and lane changes in congested conditions are relatively minor.
From our background in interacting particle systems (cf. [Lig]), we are
particularly interested in the ergodic theory of traffic, by which we mean
the asymptotic distributions of these random streams, their domains of
attraction, and their dependence on key system parameters. The natural
setting for such foundational questions is an infinite highway, in which case
one may investigate whether a model exhibits bona fide phase transitions
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from ‘‘free flow’’ to ‘‘synchronized flow’’ to ‘‘heavy traffic’’ as the density
of cars increases. Mathematics teaches us that the simpler the prototype,
the better the prospects for rigorous results.

Traffic has been modeled for the past several decades, with either
discrete or continuous state space, and in discrete or continuous time. See
[LeV] for an account of one classical approach via partial differential
equations. Nagel [Nag1] provides an overview of more recent fluid
dynamic approaches, but then argues the merits of models discrete in both
time and space: probabilistic cellular automata (PCA). Indeed, discrete
space seems appropriate since cars are evidently discrete entities with
emergent aggregate behavior on mesoscopic scales, while discrete time is
of course well-suited to simulation. The PCA of [NS], [Nag1], [NP],
[SSNI], and related work, typically involve occupancy of the sites of the
one-dimensional integer lattice by a set of cars, with at most one car per
site, each car having a velocity from a discrete set {0,..., vmax}. Transitions
are governed by additional parameters which control acceleration, braking,
and random fluctuations. The resultant algorithm is easily implemented on
a computer, but far too complicated for exact mathematical analysis.

After much experimentation we have identified a simpler PCA, which
seems to capture all the essential features discovered by Nagel and his
coworkers, but which offers brighter prospects for theorems and proofs.
Our Traffic CA, which we denote hereafter as TCA, is as follows. At time
t=0, cars are situated at certain sites of the lattice Z, at most one car to a
site. We represent an occupied site by a 1, a vacant site by a 0. The TCA
will typically start from the initial probability distribution

mr=Bernoulli product measure with density r,

which assigns a car to each site independently with probability r ¥ [0, 1].
Then at each time t \ 0, a car at x advances to site x+1 at time t+1 provided
that two conditions hold: (i) there is no car occupying x+1 at time t, and
(ii) an independent coin flip succeeds, where the probability of success is
determined by the occupancy of sites x−1 and x+2 according to Table I.

Table I. Traffic Cellular Automaton Update Rule

transition type (x−1) x (x+1) (x+2) probability of advance

accelerating 1 1 0 0 a

braking 0 1 0 1 b

congested 1 1 0 1 c

driving 0 1 0 0 d
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Let tt denote the state of the whole system, or configuration, at time t,
and write tt(x)=1 if a car occupies the site x at time t, or tt(x)=0 if x is
vacant at time t. We write tt=t

r
t when we need to make explicit the

dependence on the initial probability distribution mr. Using this notation,
the accelerating transition can be described as follows: tt+1(x+1)=1 with
probability a provided tt(x−1)=tt(x)=1 and tt(x+1)=tt(x+2)=0.
The idea is that this situation arises most often when a car has reached the
front of a jam, sees plenty of room ahead, and so increases its speed.
Similarly, the braking transition occurs most often when a car is about to
join the back of a jam, and the congested transition applies to cars within a
jam. The driving transition occurs when a car is surrounded by wide open
space. To summarize: cars which can move do so synchronously, advancing
independently according to whichever one of the four update probabilities
applies. Informally, we refer to these update probabilities as ‘‘rates.’’ To
avoid confusion about the interpretation given here, note that higher b
means higher probability of moving, hence less of a ‘‘braking’’ effect in this
terminology. We were surprised to learn recently that a continuous-time
cousin of TCA with quite different system behavior was considered more
than 15 years ago by Katz, Lebowitz and Spohn [KLS]. A version of that
continuous-time model was studied recently in a traffic context by Antal
and Schuetz [AS].

Let us illustrate some characteristics of TCA dynamics with a sample
simulation. We approximate the infinite highway Z by a finite lattice of
L=500 sites, with wrap-around at the edges. As plausible but rather ad
hoc parameters, we choose (a, b, c, d)=(0.5, 0.4, 0.3, 0.9). We run the
system for 2,000 updates starting from a random distribution of cars mr,
first with density r=0.2, then with r=0.4, 0.6, and 0.8. The final 400
updates of each run are shown in the four space-time plots of Fig. 1, with
time running from top to bottom.

For density r=0.2, each car travels at close to its maximal velocity
0.9, delayed only by intermittent and short-lived local congestion. This is
Phase 1 of the traffic trichotomy. However, at r=0.4 we see the emergence
of persistent jams moving backwards along the highway, as is typical of
real traffic above a critical ‘‘free flow’’ density. Note that individual cars
seem to alternate between periods of free flow and jams in this regime.
Next, when r=0.6, the pattern is more suggestive of Phase 2 synchronized
flow, a congested steady state with rather long-range correlations. Finally,
at r=0.8, movement is Phase 3, which is to say that it is stop and go with
extended regions of gridlock.

Of course, the progression observed here may only be qualitative,
rather than a sequence of true phase transitions in the mathematical sense:
abrupt quantitative changes in system behavior marked by singularities at
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Fig. 1. The (0.5, 0.4, 0.3, 0.9) Traffic Cellular Automaton on 500 sites, from 1600 to 1999
updates, with initial densities r=0.2, 0.4, 0.6, 0.8 (top left, top right, bottom left, bottom
right).

parameter values located along boundaries in the phase portrait. Our
primary object in this paper is to argue that the TCA on Z, with suitably
chosen values of a, b, c, d, does indeed exhibit several phase transitions as
the density of cars increases. In particular, the r=0.4 case of Fig. 1 is
suggestive of an intriguing clustering of critical free flow and a self-
organized jam equilibrium which occurs for certain parameter values.

The first step toward precise characterization of TCA phases is to
introduce throughput

h=h(r)=lim
tQ.

1
t
C
t−1

s=0
P(ts(0)=1, ts+1(0)=0), (1.1)

i.e., the asymptotic rate at which cars pass a given location along the
highway. In physics contexts (cf. [KS]) the quantity h is known as flux.
For our TCA, h [ r since cars can advance at speed at most 1. Of course,
there is no a priori guarantee that the above limit exists, but there is every
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indication that the system converges to equilibrium for all initial densities.
That is, we believe that for each initial probability distribution mr
(introduced earlier), there exists a probability measure nr, possibly a
mixture, such that

P(trt ¥ · )S nr as tQ. (1.2)

in the sense of weak convergence, so that the flow tnrt started from nr is
stationary, and

h=P(tnrt (0)=1, tnrt+1(0)=0) for all t \ 0. (1.3)

Indeed, there seems to be no simple example of a local homogeneous
interaction on {0, 1}Z for which the convergence (1.2) does not take place.
Throughout the remainder of the paper we will take care to make clear
when the existence of h is provable, and when we must rely on the Ansatz
that limit (1.1) exists.

Traffic researchers capture basic system statistics by means of the
fundamental diagram, which plots throughput as a function of density.
According to Nagel and others (cf. [KNS], [CSS]), a typical real-world
graph looks something like the ‘‘reverse lambda’’ of Fig. 2, where the gray
lines mark approximate boundaries between Phases 1, 2, and 3 of the
trichotomy, from left to right. The short dotted line indicates a metastable
free flow phase at certain densities. For these values of r, random fluctua-
tions in the traffic eventually cause jams to form, and then the throughput
drops to the lower value indicated by the solid line. Levels of h in the
intermediate case of synchronized flow are less than the maximal free flow,
so in mixed patterns like the second frame of Fig. 1 the jams gradually

Fig. 2. The ‘‘reverse lambda’’ form of a realistic fundamental diagram for traffic flow.
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move backward along the highway. In general, as we shall see later in the
paper, whether h is increasing or decreasing at a given density depends very
subtly on system parameters.

Another natural quantity to measure is the average speed s of a car.
Since cars cannot pass one another, translation invariance and (1.2) imply
that every car has asymptotic speed s, where s is the conditional expected
speed of a car at the origin under nr, given that there is a car at the origin.
Since r is the probability that there is a car at the origin, it follows that
h=r ·s, or

s=
h

r
, (1.4)

so the graph of speed vs. density is easily determined from the fundamental
diagram.

But the question remains: Precisely what are jams in a Traffic CA?
The remainder of this paper is devoted to a mathematical formulation of
the answer to this question, and to explaining how jams emerge from free
flow and related matters. The organization is as follows. We begin in
Section 2 by identifying various special cases of TCA which have been
studied previously or which have structural properties that make them
particularly amenable to rigorous analysis. After Section 2 we begin the
main focus of this study: the ergodic theory of Cruise Control, which is the
case with d=1.

An important aspect of Cruise Control is the ease with which free flow
can be identified (both formally, and visually in computer experiments).
If d=1 then well-spaced cars advance deterministically with speed 1, so
free flow is characterized by the condition s=1, which is equivalent to
h=r and the maximal free flow density rg can be defined as

rg=sup{r : h(r)=r}. (1.5)

In Section 3, we consider three extreme cases for which rg and the funda-
mental diagram can be exactly determined: (a) a=0; (b) b=1; and (c)
b=0. We also give some results for the case (d) a=1. Section 4 presents a
proof of the lower and upper bounds

a

1+2a
[ rg [

1
3

(0 < a, b < 1) (1.6)

Gray and Griffeath 419



for Cruise Control, establishing a nontrivial phase transition from free flow
to traffic with speed less than 1. Our lower bound gives a rough sense of
the critical value’s dependence on the acceleration a.

Section 5 begins our empirical investigation of the Symmetric Cruise
Controlcase, forwhichc=d=1.Bysettingc equal tod,we imposea ‘‘particle/
hole symmetry’’ that simplifies the mathematics somewhat. The remaining
two parameters live in the unit square S={(a, b) : 0 [ a, b [ 1}. We find
that this square is divided into three regimes with qualitatively different
ergodic behavior. In one region the traffic exhibits only free flow (Phase 1),
‘‘anti-free flow’’ (Phase 3), or a mixture of the two. In another region,
backward-moving synchronized jams (Phase 2) emerge at suitable traffic
densities, while the third region gives rise to forward-moving jams (again
Phase 2). We offer a complete description of asymptotic system behavior
depending on which of the three regions includes (a, b), and where the
traffic intensity r falls in relation to rg and another more mysterious critical
value called r*. Our understanding is based on extensive computer simula-
tion, together with analysis of the interface dynamics between free flow,
jams, and anti-free flow. Experimentalists will likely be convinced by the
evidence we offer, whereas purists may prefer to interpret our findings as a
series of challenging conjectures worthy of verification.

Of particular interest is Symmetric Cruise Control behavior at densi-
ties just above rg, as jams begin to form. Perhaps the most significant dis-
covery of our computer simulations is the self-organized critical clustering
which occurs for such densities throughout the interior of S. The TCA
evolves into patches of ever-increasing length, alternating between stretches
of maximal free flow with distribution nrg and stretches of a minimal ergodic
jammed state with distribution nr*. In particular, the law of t

r
t converges to

a proper mixture:

P(trt ¥ · )S cnrg+(1−c) nr* as tQ., (1.7)

where c, of course, satisfies crg+(1−c) r*=r. This clustering is quite
subtle close to the various phase boundaries in S and also near the edges
of S, so in Section 6 we present extensive numerical data for one of the
clearest examples of the phenomenon: a=b=0.6. As one manifestation of
(1.7), our simulated fundamental diagram for this particular case supports
the presence of a flat piece, i.e., linearly interpolating throughputs over an
interval of traffic densities which includes the interval (0.32, 0.40).

Next, in Section 7 we offer a preliminary description of Symmetric
Cruise Control near the right (a=1), lower (b=0), and upper (b=1)
edges of S. The ultimate goal is to prove rigorous results for perturbations
of the exact cases analyzed in Section 3. Near the right edge, traffic is
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described by diffusing particles and ballistic antiparticles on a background
ether of ideal free flow. Near the bottom edge, and in the top left corner,
there are related particle/antiparticle representations. We hope to exploit
these perturbation schemes in the future to obtain theorems which establish
clustering and other basic features of ‘‘slow-to-start’’ Cruise Control.

Section 8 contains the most speculative, but also the most intriguing
case study of the paper. We identify a slow-to-start TCA (a < d) with all
four parameters strictly between 0 and 1, in particular not Cruise Control,
for which clustering and convergence to a mixture (1.7) seem to occur. This
is apparently an example of a local interacting system, with particle con-
servation but otherwise irreducible in a natural sense, for which the limiting
measure nr (corresponding to a suitable choice of density r) is not extreme.
The mechanism whereby this system achieves arbitrarily large length scales
is still poorly understood, but certainly warrants further investigation.
Finally, Section 9 provides pointers to software and Web resources without
which this research would have been unthinkable, and which the diligent
reader will find indispensable for understanding the subtleties of emergent
traffic jams.

2. SPECIAL TRAFFIC CELLULAR AUTOMATA AND THEIR BASIC

PROPERTIES

Here we catalogue and discuss some examples of TCA, using the
notation (a, b, c, d) to designate their parameters.

(1, 1, 1, 1) Rule 184

In perhaps the simplest of all nontrivial discrete directed flows, every
particle moves one step to the right provided that cell is vacant. According
to Wolfram’s unenlightening taxonomy [Wol], this cellular automaton is
called Rule 184. The model was first discussed in the context of traffic in
[BML]. Even though the dynamics are deterministic, one can study the
limit distributions starting from mr and other random initial states, explore
the dependence of throughput (flux) on density, and so forth. This program
has been carried out in a recent paper by Belitsky and Ferrari [BF]. They
give a complete description of the invariant measures for Rule 184, and show
that the throughput is

h(r)=3r, r [ 1
2

1−r, r > 1
2 .

(2.1)

Gray and Griffeath 421



See [BKNS] for a simple two-lane variant of Rule 184 in which lane
changes increase the throughput at some intermediate traffic densities, but
not in free flow or heavy congestion.

(a, a, a, a) Synchronous Totally Asymmetric Simple Exclusion
Process (STASEP)

This is the discrete-time version of one of the most widely studied
interacting particle systems, the Asymmetric Simple Exclusion Process
(ASEP). See [Lig] for basic theory of this and related exclusion models in
continuous time. Some beautiful recent work on the ASEP appears in
[Rez] and [Sep]. The discrete-time STASEP is both a generalization of
Rule 184, and a special case of the original Nagel-Schreckenberg model
with maximum velocity 1 (see [Nag1], Section IV). The equilibria for the
STASEP were first characterized in [Yag]. (See also [SSNI], where these
same results were obtained). Under these dynamics there are no persistent
jams of the type that interest us. That is, clustering (1.7) cannot arise in the
STASEP. Its throughput is given by

h(r)=
1−`1−4ar(1−r)

2
,

which matches (2.1) when a=1.

a < d Slow-to-Start

Perhaps the most significant discovery of Kai Nagel and his colleagues
during their extensive empirical and simulation studies of traffic flow was
the role of a simple principle, as summarized in [KNW]:

In order for jams to be stable, the reaction time and thus the minimum time
headway needs to be smaller than the ‘‘escape’’ time. ... A way to obtain models
that represent this aspect of the dynamics correctly is the use of so-called slow-to-
start rules. One simply slows down acceleration from low speeds.

Whethermechanical or psychological in origin, this dynamical property seems
key to the emergence of traffic jams. For TCA, the condition becomes
a < d, i.e., that the driving rate exceed the acceleration rate. Note that our
previous example was not slow-to-start. Throughout the remainder of this
paper we will treat only slow-to-start systems, since these are the ones
which give rise to realistic jams such as those depicted in Fig. 1.

(a, b, c, 1) Cruise Control

An important simplifying feature already mentioned in the Introduction
is Cruise Control: the case d=1 in which well-spaced cars travel determi-
nistically at maximum velocity (1 cell per update). The terminology here is
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due to Nagel and Schreckenberg [NS], who considered such deterministic
free flow dynamics as limits of their more elaborate traffic models. Indeed,
the (a, 1, a, 1) TCA, like STASEP, may be viewed as a special case of the
NS model with maximum velocity 1. As explained earlier, Cruise Control
has the advantage that free flow and the maximal free flow density rg are
easily defined. Our approach to the complexity of TCA dynamics is to first
understand the d=1 case as fully as possible, and then to study models
with d < 1 as perturbations of Cruise Control.

(a, 1, c, 1) Slow-to-Start TCA with Computable Throughput

In this case, isolated cars advance deterministically. Since b=1, it can
be shown that the system either enters free flow, or it clusters into alternat-
ing stretches of free flow and solid blocks. Because of this simple structure,
we have been able to compute the throughput exactly:

h(r)=˛
r, 0 [ r [ rg

(1−r)
a

1+a− c
, rg < r [ 1,

where rg=
a

1+2a− c
. (2.2)

In a follow-up paper, we will give the proof of (2.2) and other facts about
this case. As indicated above, this is a special case of the NS model when
a=c.

In order to understand the remaining examples, it is useful to think of
empty spaces as anticars that move to the left. Modulo this change of
direction, it is easy to check that the dynamics of the anticar process are
exactly the same as for cars, except that the roles of parameters c and d are
reversed.

(a, 1, 1, d) Convoys

This somewhat strange model is obtained from the (a, 1, c, 1) model
by switching the cars and anticars and also switching left and right direc-
tions. The cars in the new model cluster into longer and longer ‘‘convoys,’’
where a convoy is defined to be a cluster of cars in which there is at most
one space between any two successive cars. The lead car of each such
cluster moves forward (at speed a or d, depending on the local circum-
stances) until it arrives within one unit of the back of the cluster ahead of it,
at which time the two convoys have coalesced. While reminiscent of certain
East European highways where travel is regulated by a smattering of
Trabants which max out at 45mph, this is not a terribly realistic traffic flow
model. In reality, one expects cars to be able to escape from the front of a
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jam. Obviously, the throughput for this case can be obtained from (2.2):
simply replace c by d and r by (1−r).

(a, b, d, d) Symmetric TCA

We can impose a ‘‘car/anticar symmetry’’ (also known as ‘‘particle/
hole symmetry’’) by assuming c=d. Admittedly this seems unrealistic,
since one would normally expect cars to move more slowly in congestion
than in the open. Note, however, that under this assumption cars within a
jam still move more slowly than those in free flow because congestion
affords less chances to advance. Our motivation here is purely mathemati-
cal: the car/anticar symmetry implies that the fundamental diagram is
symmetric about r=1

2 . Extensive simulation suggests that while this
reduction alters quantitative details, the essential qualitative aspects of
TCA system behavior remain intact, at least for r [ 1

2 . Over that range of
traffic densities we shall see that symmetric fundamental diagrams remain
true to the spirit of Fig. 2.

(a, b, 1, 1) Symmetric Cruise Control

This is of course the intersection of the Cruise Control and Symmetric
cases. Our empirical investigations in Sections 5 through 8 are primarily
devoted to this case.

We close this section by introducing an interface representation for
TCA dynamics which will prove useful later on, and which is interesting in
its own right. This sort of construction goes back to Rost [Ros], and Krug
and Spohn [KS] for particle systems. See also [EG] and [Sep] for more
recent treatments. At each discrete time t, the interface is the graph inter-
polating between points {x, gt(x)} of a map on Z such that adjacent sites
are mapped to integer values which differ by ±1:

|gt(y)−gt(x)|=1 whenever |y−x|=1.

In other words, the interface consists of a doubly infinite sequence of
diagonal bonds of slope ±1 linked end to end (see Fig. 3). Cars are iden-
tified with the heads of downward pointing arrows, empty spaces with the
heads of upward pointing arrows. To normalize the initial position of the
interface, set g0(0)=0. The dynamics are directed up—relative minima
advance two units, thereby becoming relative maxima, with probabilities
determined by the slopes of the neighboring bonds, as summarized in Fig. 3
(light gray being the new position). With the identification between cars,
spaces, and arrows given above, we have

tt(x)=
1
2 (1+gt(x)−gt(x−1)),
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Fig. 3. Interface representation of TCA dynamics.

and it is easy to check that the transitions of Fig. 3 correspond exactly to
the TCA update rule of Table I. Observe that the throughput h of (1.2) is
half the interface’s speed of advance at x=0,

h=lim
tQ.

1
2t
gt(0)

(again, assuming this limit exists). The interface representation also clearly
shows the relationship between the motion of cars to the right and spaces
to the left, since interchanging the values of c and d is equivalent to
interchanging upward and downward arrows together with the left and
right directions.

3. CRUISE CONTROL: ANALYSIS OF EXTREME CASES

In this section we prove a theorem which identifies the exact ergodic
behavior of the Cruise Control model (d=1) in the various special cases
when either a or b equals 0 or 1. An informal description of our results is
as follows:

(a) Not surprisingly, when the acceleration a is 0, then all cars even-
tually grind to a halt, so the throughput is identically equal to 0.

(b) The case a > 0 and b=1 was already mentioned in the previous
section (‘‘Slow-to-Start TCA with Computable Throughput’’). The
throughput can be computed exactly, and clustering occurs. In this paper,
we will only give the proof under the additional assumption that c=1
(Symmetric Cruise Control); the proof for more general c will appear
elsewhere.

(c) For a > 0 and b=0, the critical value rg and throughput h are
independent of a > 0. We give a fairly complete description of the systems’
limiting configurations. In the asymmetric case (c < 1), the ergodic behavior
exhibits an interesting transition as the density crosses r=1

2 .

(d) Asymptotics for the case a=1 are somewhat involved, depending
on b in a way which seems to defy exact calculation. Nevertheless, it can be
shown that the maximal free flow density is rg=

1
3 when c=1.
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Here is some terminology that will be used in the statement and proof
of the theorem, as well as subsequent discussion. We will assume that each
car is labeled in some unique way, so that the cars retain their identity
throughout the time evolution. We say that a given car is permanently stuck
at time t if the car has speed 0 at all times \ t. Similarly, a car is in perma-
nent free flow at time t if the car has speed 1 at all times \ t, and a car is
permanently isolated (respectively permanently double-isolated) at time t if
the car is separated by at least one (respectively two) vacant site(s) from all
other cars at all times \ t. Becoming permanently isolated is a necessary
condition for entering permanent free flow. When b=1, it is also suffi-
cient. When b < 1, it is almost surely the case that a car enters permanent
free flow if and only if it becomes permanently double-isolated. Note that if
one car becomes permanently stuck, then eventually all cars to the left of it
also become permanently stuck. Since the initial configuration is always
translation invariant and ergodic in our model, it follows from standard
arguments that there is a 0–1 law: either all cars become permanently stuck
with probability 1, or the probability is 0 that any car becomes perma-
nently stuck. A similar argument shows that a 0–1 law also applies to
achieving permanent free flow: either all cars enter permanent free flow
with probability 1, or the probability is 0 that any car enters permanent
free flow. It is natural to make the following conjecture, which we believe
applies to the general Cruise Control case:

Conjecture. If r < rg, then all cars enter permanent free flow with
probability 1.

If two cars are not separated by another car, then we say they are
consecutive. The (possibly empty) set of vacant sites between two consecu-
tive cars is called the gap between them, and the number of such sites is the
size of the gap. If the gap between two cars has size 0, then we say that
there is a bond between the cars. Suppose there are three consecutive cars,
with a bond between the two on the left, and a gap of size 1 between the
two on the right, giving the configuration 1101. If the middle car moves
and the car on the right does not, then we say that the bond between the
two cars on the left moves one step to the right. Bonds can only move to
the right. Bonds can also be created or destroyed when cars move.
However, when b=0, it is easily seen that bonds cannot be created. For
anticars (vacant spaces), we define antigaps and antibonds analogously. Of
course, an antigap is simply an interval of consecutive cars. An antigap of
size at least 2 is sometimes called a solid block. This redundant terminology
allows us to efficiently use symmetry in the arguments below.
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Here are some consequence of our first theorem which the reader may
find surprising. First, from parts (a) and (c), we see that the throughput h
does not always depend continuously on the parameters of the model. In
particular, there is a discontinuity at a=b=0. Second, from parts (b) and
(c), we learn that the dependence of h on the parameter b is not monotonic.
Namely, (3.2) shows that h(13)=

1
3 when b=0, whereas (2.2) shows that

when b=1, the value of h(13) can be either strictly less than or strictly
greater than 13 , depending on the value of c. Our explicit formulas for the
throughput are nondecreasing in the parameter a, and we conjecture that
this monotone dependence on a holds in general for the Cruise Control
model. Finally, note that the fundamental diagram is not unimodal in case
(c) for any c > 0.

Theorem 1. Let tpt be Cruise Control with acceleration a, braking b,
congestion c, and traffic density r.

(a) If a=0 then every car becomes permanently stuck with proba-
bility 1, and h(r) — 0. (This conclusion also holds for general d.)

(b) Let a > 0, b=1. If c < 1 then the critical density rg and
throughput h(r) are given by (2.2). If c=1 (Symmetric Cruise Control),
then the following statements hold. If 0 [ r < 1

2 , then every car becomes
permanently isolated and enters permanent free flow, with probability 1;
a corresponding result for 12 < r [ 1 is obtained by using car/anticar sym-
metry. If r=1

2 , then isolation occurs in the following weaker sense:

P(tt(x)=tt(x+1)=1)Q 0 for all x as tQ..

The throughput h has the form (cf. the first graph of Fig. 4)

h(r)=3r, 0 [ r [ 1
2

1−r, 1
2 < r [ 1.

(c) Let a > 0, b=0. If 0 [ r < 1
2 , then every car becomes perma-

nently isolated with probability 1, while if r=1
2 , then

P(tt(x)=tt(x+1))Q 0 for all x as tQ..

Furthermore, if 0 [ r < 1
3 , then every car becomes permanently double-

isolated and enters permanent free flow, with probability 1. On the other
hand, if 13 [ r [

1
2 , then for all x,

P(tt(x−1)=0, tt(x)=1, tt(x+1)=tt(x+2)=0, tt(x+3)=1)

Q 1−2r as tQ., (3.1)
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and

P(tt(x−1)=0, tt(x)=1, tt(x+1)=0, tt(x+2)=1)

Q 3r−1 as tQ..

For r > 1
2 , all of the anticars (vacant spaces) eventually become perma-

nently isolated, after which they behave in a manner equivalent to the
STASEP introduced in Section 2, with q=c. (See the proof of Theorem 1
for a more precise description of this behavior.) The throughput h is given
by (cf. the second graph of Fig. 4 for the case c=1)

h(r)=˛
r 0 [ r [

1
3

1−2r
1
3
< r [

1
2

r−`r2−4c(2r−1)(1−r)

2

1
2
< r [ 1.

(3.2)

(d) Let a=1, 0 < b < 1, and c=1. For each r, the throughput h(r)
exists and is given by (1.1). When r < 1

3 , all cars enter permanent free flow
almost surely, and when r=1

3 , (3.1) holds. When
1
3 < r [

1
2 , the cars almost

surely do not enter permanent free flow, and all gaps and all solid blocks
eventually have size no greater than 2. In particular, rg=

1
3 .

Proof. In each case, the proof is trivial if r=0, so let us assume
r > 0 throughout.

(a) With probability 1, there is a configuration of the form 1100
somewhere in the initial state. Since a=0, the two cars in this configuration

Fig. 4. Fundamental diagrams for the top and bottom edges of the SCC phase portrait.
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are permanently stuck. The 0–1 law mentioned above now implies that all
cars become permanently stuck with probability 1. (Clearly, this argument
also works for general d).

(b) As mentioned earlier, we only present the case where c=1 here.
The more general case will be treated in a separate paper. Consider a gap
of size at least 2 in the initial configuration. Since a > 0, the car immedi-
ately to the left of this gap eventually moves forward, with probability 1,
thereby reducing the length of the gap by 1 at its left end. Since d equals 1,
the car continues to move forward at speed 1, at least until all of the anti-
bonds in the gap have disappeared. Furthermore, since b and c both equal 1,
a gap cannot grow if it has size 1. In other words, once the car immediately
to the left of a gap has moved at least once, the number of antibonds in
that gap cannot increase.

It is easy to see from this argument that if the car immediately to the
right of a gap does not enter permanent free flow, then from some point
on, the gap contains no antibonds. Because of the 0–1 law for permanent
free flow, we conclude that if any car does not eventually enter permanent
free flow, then with probability 1, all gaps eventually have size bounded
above by 1. If r < 1

2 , the average gap size is greater than 1, so it must be the
case that all cars enter permanent free flow with probability 1. In the case
that r=1

2 , suppose that all cars do not enter permanent free flow with
probability 1, so that all gaps eventually have size bounded above by 1.
The car/anticar symmetry implies in this case that, with probability 1, all
antigaps eventually have size bounded above by 1, or in other words, that
all solid blocks almost surely eventually disappear. The weaker conclusion
for the case r=1

2 now follows easily.

(c) Since b=0, it is easy to see that it is not possible for new bonds
or antibonds to be created. Bonds move to the right with speed c, unless
they are part of a 1100 configuration. Similarly, antibonds move left with
speed d=1 unless they are part of such a configuration. When a bond and
an antibond meet in a 1100 configuration, they destroy one another once
the indicated accleration transition occurs.

Now consider a particular site x. If r < 1
2 , it follows from the Strong

Law of Large Numbers that every sufficiently large interval containing x
has more antibonds than bonds in the initial state. Hence every bond is
eventually annihilated with probability 1. Furthermore, if a car starts at x,
it follows that only finitely many of the bonds to the left of x will catch the
car before being annihilated. A car cannot catch up with a bond on its right
since b=0, so a given car can only be a part of finitely many different
bonds during the time evolution. That is, every car eventually becomes per-
manently isolated with probability 1. The corresponding weaker conclusion
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for the case r=1
2 follows from the Weak Law. The assertion about the

throughput for the case r=1
2 also follows.

We now prove the remaining conclusions in part (c) for r < 1
2 , in which

case every car becomes permanently isolated with probability 1. Since b=0,
permanently isolated cars have only two speeds, 1 or 0, depending on whether
or not the two sites ahead of them are vacant. Consider two consecutive
permanently isolated cars. It is easy to see that if the gap between them
has size 2, then that size cannot increase. It follows that at least one of the
following conditions holds: either the size of the gap between the two cars is
eventually bounded above by 2 forever, or both cars eventually enter per-
manent free flow. The 0–1 law for permanent free flow now implies that there
are only two possibilities: (i) all of the cars enter permanent free flow, and
hence they also all become permanently double-isolated; or (ii) no car enters
permanent free flow, and it is then easy to see that, with probability 1, every
car eventually ‘‘catches up’’ within two units of the car ahead of it, so that the
gap between them eventually stays bounded above by size 2 forever. If r < 1

3

there is too much vacant space for the second of the two possibilities to occur
so every car enters permanent free flow almost surely. If r > 1

3 , there is not
enough vacant space for the first possibility to occur, so every gap is even-
tually bounded above by size 2. Since all cars become permanently isolated
with probability 1, it is also true that every gap is eventually bounded below
by size 1.

To complete the case in which r < 1
2 , we need to show that the pro-

portion of cars which have a gap of size 2 in front of them converges to
(1−2r)/r as tQ.. Consider the distribution at time t of the ‘‘typical’’
gap size, defined in the usual manner by the Ergodic Theorem, and denote
this distribution by Qt. Because cars do not appear or disappear, the
expected value of this distribution equals its value at time 0,which is (1−r)/r.
A standard formula for expected value now gives

C
.

k=1
Qt([k,.))=

(1−r)
r

for all t \ 0.

Since gaps of size 2 or larger cannot grow and since all gaps eventually
have size 1 or 2, Qt([k,.)) decreases to 0 as t tends to . for all k > 2
Since Qt([1,.))=1 and Qt(1)=1−Qt([2,.)), it follows from the
Dominated Convergence Theorem that limtQ. Qt(1)=(1−2r)/r. This is
the asymptotic proportion of cars with speed 1. In the limit, all remaining
cars have speed 0. The desired form of the throughput function h(r) follows
immediately.

We now consider the case in which r > 1
2 . By using the Strong Law as

before, we see that every antibond eventually disappears. A standard large
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deviations estimate for the initial state can be used to strengthen this result
as follows: given any finite set of sites A, there exists a time, with proba-
bility 1, after which there are no antibonds associated with any of the sites
in A. Consequently, we can determine the asymptotic behavior of the
system by restricting our attention to configurations in which there are no
antibonds. That is, we may assume that all of the anticars are already
permanently isolated at time 0. It is not hard to check that when the state
of the system satisfies this restriction, then the anticars move according to
STASEP dynamics, with q=c, except for one detail: anticars are forced to
remain two units apart, rather than a single unit apart. But this is a trivial
difference which is easily handled by simply suppressing one car between
each pair of anticars at each time step. Such a transformation changes the
density of anticars from (1−r) to (1−r)/r. The formula for the throughput
in this transformed process is obtained by substituting this density for r
and c for q in the throughput formula for STASEP given in Section 2. To
recover the throughput of our original model, we multiply by the scaling
factor r, thereby obtaining the desired result.

(d) The assertion about the existence of throughput in this case
follows from discrete-time versions of results from [EG]. In order to prove
the remaining assertions, we consider any antigap of size at least 2. Since
a=1, cars leave the front of this antigap at rate 1. So an antigap cannot
grow if it has size at least 2. By symmetry, a gap also cannot grow if it has
size at least 2. Now consider two consecutive cars, separated by a gap of
size greater than 2. Because a=1, the car to the left of the gap has speed 1.
Therefore, unless the car to the right of the gap enters permanent free flow,
the gap will decrease in size until it has size 1. It follows that we have the
same two alternatives mentioned at the end of the second paragraph in the
proof of part (c). Therefore, when r < 1

3 all cars enter permanent free flow
almost surely. We further conclude that if r > 1

3 , it is almost surely the case
that no cars enter permanent free flow and the sizes of all gaps are even-
tually bounded above by 2. The weaker result for r=1

3 also follows from
this argument. Finally, symmetry implies that the sizes of all antigaps are
almost surely eventually bounded above by 2 if r < 2

3 , and the proof is
complete. L

We end this section with a few additional remarks about the TCA
models with a=c=d=1 (Symmetric Cruise Control, but not slow-to-
start). As part (d) of Theorem 1 suggests, for densities just above rg=

1
3 ,

these systems evolve toward a background ‘‘ether’’ of ideal free flow,
namely the periodic configuration

· · · 100100100 · · · , (3.3)
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interrupted by occasional pairs of cars separated by a gap of size 1. Call
such a pair a virtual particle. It is easy to check that any virtual particle
well separated from the others performs a random walk within the ether,
advancing 1 unit with probability b (when its trailing car advances), or
falling back 2 units with probability 1−b (when its trailing car stays
put, and so becomes the virtual particle’s lead car). Thus the expected
displacement of these mini-jams is

1 ·b+(−2) · (1−b)=3b−2,

and the motion has positive drift for b > 2
3 , negative drift for b <

2
3 , and

mean 0 for b=2
3 . Of course, more complicated interactions play a role

when virtual particles wander close together, but we will see in subsequent
sections that the point (1, 23) has special significance in the Symmetric
Cruise Control phase portrait. The following conjecture is well-supported
by simulations:

Conjecture. If a=c=d=1 and if the initial condition for TCA is a
left half-space of cars, then the border between ether on the right and
antiether on the left remains tight if b < 2

3 , but not if b >
2
3 .

Letting ha, b(r) denote the throughput of Symmetric Cruise Control
with density r and parameters (a, b), a simple coupling of interface repre-
sentations yields the inequality

ha, b(r) [ h1, b(r) (3.4)

for all a, b, and r. Indeed, if the (a, b) and (1, b) systems evolve simulta-
neously as upward moving interfaces in the manner of Fig. 3, using the
same ‘‘b-coin,’’ and if the (a, b) and (1, b) interfaces initially agree every-
where, then it is easy to check that under no circumstance can any portion
of the former graph ever lie above the corresponding portion of the latter.
In particular, the interface positions at 0 must maintain this ordering, and
(3.4) follows.

In light of (3.4), it would be especially useful to obtain a good, explicit
upper bound on h1, b(r), so we pose this as an open problem. Simulations
indicate that h1, b(

1
3)=

1
3 is the maximal throughput of the (1, b) system for

any b < 2
3 , which would imply that for any density r the throughput is at

most 13 throughout the ‘‘lower two-thirds’’ of S. For b close to 1, presum-
ably h1, b(

1
2) gives a uniform upper bound on ha, b(r).
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4. CRUISE CONTROL: BOUNDS ON THE MAXIMAL FREE FLOW

DENSITY

We now present simple upper and lower bounds on the maximal free
flow density rg. These apply to the general Cruise Control model, under
the assumption that b < 1. Our upper bound is trivial, but the lower bound
captures something of the cutoff’s dependence on acceleration. Possible
improvements will be mentioned after the proof.

Theorem 2. For b < 1 and d=1,

a

1+2a
[ rg [

1
3
.

Proof. Since b < 1, we have already seen that permanent double-
isolation is equivalent to eventual free flow. In other words, if r < rg then
eventually there can be at most one car every three spaces along the road.
But traffic density is preserved, so this implies r [ 1

3 , which yields the upper
bound.

Turning to the lower bound, we will assume r > rg, and show that
r \ a

1+2a . Condition on the event that a car starts at the origin at time 0, let
Xt be the position of that car at time t \ 0, and let Yt be the position of the
next car to the right of Xt. Standard theory implies that E(Yt−Xt)=

1
r for

all t \ 0. Define the following events for 0 [ s < t:

At={Yt−Xt [ 2}

Bs, t={Ys−Xs=2 and Yu−Xu > 2 for s < u [ t}

Ct={Yu−Xu > 2 for 0 [ u [ t}.

Under our assumption that r > rg, we have limtQ. P(Ct)=0. Therefore,

1
r
[ lim
tQ.

52P(At)+C
t

s=0
P(Bs, t) E(Yt−Xt | Bs, t)6 .

Since 2 < (1+2a)/a for a > 0, it follows from this last inequality that we
will have the desired lower bound if we can show that

E(Yt−Xt | Bs, t) [
1+2a
a

for all 0 [ s < t.
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Actually, we will show a little more; namely that

E(Yt−Xt | Bs, t, Yt−Ys,Fs) [
1+2a
a

for all 0 [ s < t

whereFs is the s-field generated by the traffic process up to time s.
If there is a vacant site immediately to the left of Xs+1 , then it is easy

to see that Yt−Xt=3 if the event Bs, t occurs. Since
1+2a
a > 3 when a < 1, we

therefore only need to consider the case in which there is a car at the site
immediately to the left of Xs+1. In this case, we can imagine that a coin is
tossed at each time unit, starting at time u=s+1. The probability of
Heads is a, and the car at Xu does not move until Heads appears. The coin
tosses are independent of the s-fieldFs, but they are not independent of the
event Bs, t or of the quantity Yt−Ys. We will now consider the nature of the
dependence.

Let K=(t−s)−(Yt−Ys). If Bs, t occurs, then a little thought reveals
that the results of the coin tosses at the times s+1,..., s+K must all be
Tails, since otherwise we would have Yu−Xu=2 for some u in the interval
(s, t]. A little more thought reveals that the coin tosses after time s+K are
independent of Bs, t and Yt−Ys, and that Yt−Xt=3+N where N equals the
number of consecutive Tails obtained starting at time s+K+1.

Thus, we have generally that if the event Bs, t occurs, then Yt−Xt
[ 3+N, and N is independent of Bs, t, Yt−Ys, and Fs. Since E(N)=

1−a
a it

follows that

E(Yt−Xt | Bs, t, Yt−Ys,Fs) [ 3+
1−a
a
=
1+2a
a

,

as desired. L

Even though cars arranged as density 13 ideal free flow (3.3) all advance
with maximal speed 1, simulations strongly suggest that rg <

1
3 whenever

a, b, c < 1. Confirmation of this strict inequality remains an open problem
for Cruise Control dynamics. By (1.4), such a result would imply that random
initial distributions with certain densities below 1

3 have cars traveling at less
than maximal speed due to jamming. The timed on-ramps in Los Angeles,
Minneapolis [Bla], and elsewhere attempt to inject order into an otherwise
chaotic traffic stream, an ambitious control strategy in light of the inherent
instability of ideal free flow.
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5. SYMMETRIC CRUISE CONTROL: EMPIRICAL STUDY OF THE

PHASE PORTRAIT

In Symmetric Cruise Control (SCC), with c=d=1, we have what may
be the simplest prototype for the complexities of traffic flow. This model is
defined by only three parameters: acceleration a, braking b, and the traffic
intensity r. Thus, for each point (a, b) in the unit square S=[0, 1]×
[0, 1] there is a family of SCC processes trt , r ¥ (0, 1), with throughput
function h(r) as well as more detailed density-dependent ergodic behavior.
Most of the rest of this paper is devoted to a mathematically precise
description of this phase portrait. A related, but inherently qualitative look
at traffic behavior in terms of acceleration and braking was carried out by
Krauss [Kra] in his dissertation, using algorithms of Nagel et al. For other
intriguing examples of two-dimensional phase portraits for nonlinear
interacting stochastic systems, see [DN] and [MDDGL].

To begin our study of the SCC phase portrait we consider its left, top,
bottom, and right edges

EL={a=0},

ET={a > 0, b=1},

EB={a > 0, b=0},

ER={a=1, 0 < b < 1}.

We have seen in parts (a), (b), and (c) of Theorem 1 that the processes trt
have quite simple limiting behavior along the first three of these edges, and
that their fundamental diagrams are exactly computable. SCC dynamics on
ER are more involved, and not slow-to-start, but have regularity properties
which allowed us to establish the existence of h(r) along this edge as well.
By contrast, we are presently able to prove existence of throughputs in
S°=(0, 1)×(0, 1) only in cases where the system goes into free flow.

More detailed rigorous results on Symmetric Cruise Control seem
hard to come by, so we turn to simulation for a preliminary understanding
of traffic patterns in the interior S° of the phase diagram. We start with
the following experimental observations, which relate to the results in
Theorems 1 and 2. For the mathematician, these are also conjectures, some
cases of which may not be too difficult to prove.

rg Q
1
3 as (a, b) approaches EB 2 ER. (5.1)

rg Q j(a) as (a, b)Q (a, 1) from withinS°, where j is a continuous

function that equals 0 at a=0 and 13 at a=1. (5.2)
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Further experimental work is facilitated by border analysis—the study
of the dynamics of the region that divides traffic jams and free flow. Such
analysis provides a rather complete picture of SCC ergodic behavior. Our
basic experiment with density r runs on a large torus of N sites, with cars
initially in a solid block of size NrNM, and the remaining space vacant. As it
turns out, three qualitatively different outcomes of the basic experiment
give rise to distinct phases for the system and partition S° into regimes
calledT, U−, and U+, as we will now explain.

RegionT (tight borders; stationary jams)

In the simplest scenario, our basic experiment with density 12 produces
a stable border between a single block of maximal free flow and a single
block of minimal anti-free flow. Within this regime, cars gradually leave
the initial solid block at the front, sending corresponding anticars back-
ward through the jam, but the border between the front of the jam and
exiting free flow stays tight. Formally, this means that the diameter of the
intermediate region containing cars which are neither in free flow nor in
antifree flow stays stochastically bounded by an a.s. finite random variable,
uniformly in time and the size of the torus N. (Alternatively, one can
require a tight border in an infinite experiment with cars initially on the
negative half-line and empty space on the positive side.)

Of course, on a finite torus cars in free flow eventually wrap around
and meet the back border of the anti-free flow jam. By symmetry, that
border must also be tight, so the basic experiment with density 1

2 is
inherently stable, maintaining one block of each phase for eons if N is at
all large, until some exceedingly rare event causes a transient instability. In
contrast, if the initial state is product measure mr with density r, the system
finds free flow if r [ rg, and settles into anti-free flow if r \ 1−rg. But for
intermediate densities r ¥ (rg, 1−rg), traffic self-organizes into alternating
regions of maximal free flow and minimal anti-free flow. These regions move
diffusively and cluster in a manner reminiscent of the basic one-dimensional
voter model (cf. [Lig]). Consequently, (1.7) holds with rg=1−rg. Figure 5
shows SCC clustering with parameters (0.2, 0.6), a representative phase
point from region T. The traffic has formed two regions of heavy conges-
tion (anti-free flow) which will eventually merge into one as their borders
fluctuate somewhat like random walks.

RegionU− (unstable back border, stable front; jamsmove backward)

For other phase points, such as (0.6, 0.6), the basic experiment with
density 12 evolves quite differently. As illustrated by the four-panel time
trace of Fig. 6, free flow exits the initial solid block with a tight border, but
after cars wrap around the torus their interaction with the back border of
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Fig. 5. (0.2, 0.6) Symmetric Cruise Control on 1000 sites, from 19,600 to 19,999 updates,
with initial density r=0.37.

the jam is unstable. A new synchronized flow emerges, spreads at linear
speed, and eventually pervades the entire lattice. Evidently there is a stable,
ergodic, density 12 measure n1/2 for traffic with these parameters which is
neither free flow, nor anti-free flow, but rather an instance of ‘‘Phase 2’’ in
the Introduction. Not surprisingly, traffic started from m1/2 appears to
converge to the same distribution n1/2 whereas the system attains free flow
if r [ rg.

But what happens for r between rg and
1
2? At densities just below

1
2 ,

traffic converges to an ergodic equilibrium nr as one would expect. (The
emergence of a new phase, as shown in Fig. 6, continues to take place in
the basic experiment, albeit at a slower linear rate.) But for substantially

Fig. 6. The density 12 basic experiment for (0.6, 0.6) Symmetric Cruise Control: emergence at
the synchronized traffic phase at the back border of a solid jam.
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Fig. 7. (0.6, 0.6) Symmetric Cruise Control on 1000 sites, from 19,600 to 19,999 updates,
with initial density r=0.37.

lower densities a new phenomenon arises, as suggested by Fig. 7. Namely,
the traffic pattern appears to converge to a mixture of maximal free flow
and a minimal ergodic synchronized jam state nr*. Density rg is charac-
terized as the infimum over all r for which homogeneous synchronous flow
emerges in the basic experiment with density r. Within U−, it turns out that
rg is always strictly greater than rg; in between, (1.7) holds and traffic
clusters into alternating stretches of maximal free flow and self-organized
critical synchronized jams which grow without bound on the infinite lattice.
The next two sections will present additional evidence for this hypothesis.
Since the front of heavy congestion does not advance in this regime, the
borders between synchronized flow and maximal free flow retreat, and the
jams move backward, as is apparently typical of real-world traffic.

Region U+ (unstable front border, stable or unstable back; jams
move forward)

Within a third region of S° our basic experiment with density 12 is
unstable at the front border of the initial solid jam. A representative phase
point for this case is (0.6, 0.8). The resultant ergodic behavior is analogous
to that in U−: from mr, the system converges to an ergodic equilibrium nr if
r is sufficiently close to 12 , to free flow if r [ rg, and (1.7) holds for r ¥
(rg, rg), where rg is the infimum of densities for which the synchronized
flow emerging from the front border takes over the entire lattice. Figure 8
provides an illustration of convergence to a mixture in this setting. The
distinguishing feature is forward motion of the jams.

A subtle issue arises: can it happen that both the front and back
borders of the basic experiment are unstable, and if so, how does the traffic
self-organize in this case? Indeed, careful simulation reveals a small region
of phase emergence at both the front and rear of a congested jam. Thus, there
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Fig. 8. (0.6, 0.8) Symmetric Cruise Control on 1000 sites, from 19,600 to 19,999 updates,
with initial density r=0.37.

can be two distinct ergodic equilibria in a neighborhood of density 1
2 .

Further experimentation indicates that the synchronized jam produced at
the initial front border always dominates that produced at the back, in that
the former displaces the latter at a linear rate once they meet. In other
words, nr emerges from the front, and is stable, whereas the measure n

−

r

that emerges from the back is unstable. Consequently, critical jams move
forward in this case as well, and it is effectively a portion of U+.

By systematically simulating our basic experiment at a large number of
phase points throughoutS°, and also studying the corresponding evolutions
from various mr, we have arrived at the sketch of the SCC phase portrait
shown in Fig. 9. Behavior near the phase boundaries is difficult to interpret,

Fig. 9. The Symmetric Cruise Control Phase Portrait.
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either visually or numerically, so it is important to stress that this diagram
is only approximate. Some qualitative features are worth mentioning,
however. First, note that the boundary between T and U+ intersects the
left edge near b=0.9 rather than in the upper left corner. Thus, congested
flow is unstable for models with b sufficiently close to 1 no matter how
small the acceleration a. At the right edge, the boundary between U+ and
U− seems to end at exactly b=2

3 , a feature which can be understood in
terms of the virtual particles introduced in Section 3 and used in Section 7
below to elucidate SCC dynamics near ER. The light gray curve in our
sketch marks the upper boundary of a small ‘‘triangular’’ region where
both the front and back borders of a congested jam are unstable, so that in
addition to nr there is an unstable ergodic equilibrium n

−

r for traffic densi-
ties in a neighborhood of 12 . Finally, as b decreases, the boundary between
T and U+ at first glance seems headed for EB, but upon closer inspection
ends in the lower left corner. This is the most speculative portion of the
sketch since accurate simulation requires enormous array size and run time
when both parameters are small and traffic is increasingly sluggish.

The apparent behavior of rg for parameters approaching the edges of
S or the boundary between tight and unstable borders is summarized as
follows:

r*Q 1
3 as (a, b) approaches EB 2 ER. (5.3)

r*Q j(a) as (a, b)Q (a, 1) from withinS°, where j is the function

given in (5.2). (5.4)

r*Q 1
2 as (a, b) approaches the boundary betweenT and U

+2U−. (5.5)

r* > rg throughoutS°. (5.6)

We conclude this section with a few remarks about the shape of
SCC fundamental diagrams. Of course h(r) is linear up to rg by definition
(1.5), while (1.7) implies that h interpolates linearly between (rg, rg) and
(rg, h(rg)). On T, r*=1−rg and h(rg)=rg by symmetry, so h consists
of 3 linear pieces with the middle one constant. On U− the jams move
backward, which implies that h(rg) < rg. Thus the linear piece on the
interval (rg, rg) has negative slope. Presumably the graph of h is a smooth
curve over the interval of densities (rg, 1−rg) corresponding to ergodic
synchronous traffic. Similarly, on U+ the linear piece from rg to rg has
positive slope since the jams move forward. Figure 10 shows caricatures of
fundamental diagrams in each of the three basic regions of Fig. 9. As a
final indication of throughput subtleties, we note that along the boundary
between U− and U+, with a near 1 and b % 0.705, there would appear to be
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Fig. 10. Qualitative Shape of the Fundamental Diagram onT, U−, and U+ (left to right).

cases where rg < rg and h(rg)=h(rg) % 1
3 . For such parameters, it is pretty

inconceivable that h is constant over [rg, 1−rg]. So the fundamental
diagrams in a neighborhood of such (a, b) are presumably neither convex
nor concave over [rg, 1−rg].

6. SCC: AN INSTANCE OF SELF-ORGANIZED CLUSTERING

Our description of the Symmetric Cruise Control phase portrait in the
previous section relied mainly on computer visualization: of border dynamics,
and of clustering from mp. To bolster the evidence for convergence to a
mixture (1.7) at suitable traffic densities, we have carried out extensive
Monte Carlo numerical estimation of the throughput in the representative
case of Figs. 6 and 7: a=b=0.6. For densities r ranging from 0.28 to 0.50
in increments of 0.005, we peformed 10 simulations each, up to time
100,000 on an array of 4,000 sites. In each simulation, the time-averaged
throughput at 0 was computed from t=20,000 to t=100,000 in order to
diminish the impact of initial transients. Variance reduction was achieved
by populating the lattice with exactly N4000rM cars, randomly placed. Then
ĥ(r) was set as the average of the 10 simulated throughputs. A sample of
the data, to four decimal places, is shown in Table II.

The missing entry for r=0.31 reflects the presence of observable finite-
size effects this close to rg. (By doing analogous simulations on larger arrays
we were able to obtain an estimate of h at that density consistent with the
other entries of the table.) Plots of our data for the throughput and speed
(as determined by (1.4)) are shown in Fig. 11. We have superimposed a
least squares fit of the throughput data from r=0.32 to r=0.40 on the
estimated fundamental diagram. Our results are reasonably consistent with
critical values rg % 0.306 and rg % 0.43, although this latter value is still
quite tentative. In any case, there is rather compelling evidence for the
existence of a linear piece in the diagram just above the maximal free flow
density, but stopping short of density 12 . This scenario is best explained by
asymptotic behavior (1.7), in which case the throughput within this regime
is a mixture of the maximal free flow throughput and the minimal syn-
chronized traffic throughput, as postulated in Section 5.
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Table II. Monte Carlo Estimation of

Throughput h vs. Density r for (0.6, 0.6)

Symmetric Cruise Control

r ĥ

0.30 0.3000
0.31 —
0.32 0.3031
0.33 0.3016
0.34 0.3001
0.35 0.2987
0.36 0.2973
0.37 0.2962
0.38 0.2950
0.39 0.2940
0.40 0.2926
0.41 0.2910
0.42 0.2907
0.43 0.2893
0.44 0.2883
0.45 0.2876
0.46 0.2867
0.47 0.2859
0.48 0.2854
0.49 0.2849
0.50 0.2849

7. SCC: VIRTUAL PARTICLES NEAR THE EDGES OF THE PHASE

DIAGRAM

The best prospects for rigorous mathematical confirmation of con-
vergence to a mixture (1.7) and clustering in slow-to-start Traffic CA
dynamics would seem to reside close to the top, bottom, and right edges of
the phase portrait, i.e., within S° but near the boundaries ET, EB, or ER,
where the behavior is known precisely from Theorem 1. In keeping with
many familiar models from statistical mechanics and cellular automata,
these perturbations of exactly solvable dynamics admit simplified descrip-
tions in terms of virtual particles which track the evolution of ‘‘disloca-
tions’’ from the unperturbed system. Our objective in this section is to
sketch three types of virtual dynamics which arise, in reverse order: right,
then bottom, then top, and then to present a fourth, unified representation
which is exact throughout S. Systematic analysis of this approach to
Cruise Control will be relegated to a subsequent paper.
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Fig. 11. Empirical estimation of the throughput h (left) and velocity s (right) for (0.6, 0.6)
Symmetric Cruise Control as a function of the density r.

(a) Ballistic-Diffusive Representation Near ER

As explained at the end of Section 4, on ER isolated virtual particles of
the form 101 perform mean 3b−2 random walks on a background ether of
density 13 ideal free flow. Near ER, these walks are augmented by ballistic
virtual antiparticles—10001 configurations which move to the right deter-
ministically at speed 1. The virtual antiparticles are created when random
walks collide to form a · · · 01011010 · · · local configuration and then the
second car fails to advance for two successive time steps (an event with
probability (1−a)2). Once that car manages to accelerate, the net result is a
ballistic virtual antiparticle/particle pair adjacent to the colliding pair.
Each virtual antiparticle continues to travel at maximal velocity until it
encounters a dislocation, at which time the two annihilate. The points of
contact in Fig. 12 between diagonal white lines (00) and dark gray random
walks (101) signal such annihilations.

Fig. 12. (0.95, 0.67) Symmetric Cruise Control on 1000 sites, from 19,600 to 19,999 updates,
with density r=0.34.

Gray and Griffeath 443



Since ballistic motion is effectively instantaneous on the diffusive scale
of random motion, a simpler prototype for these dynamics consists of
randomly walking particles such that, whenever a pair collides, there is
simultaneous birth of a new particle at the point of collision, and annihila-
tion of the nearest particle to the right. It can be shown that such an
interaction among any finite number N of particles remains tight on a large
torus, i.e., the diameter of the particle cluster remains stochastically
bounded above, uniformly in time and in the size of the torus, by an a.s.
finite random variable DN. Within the cluster an equilibrium distribution of
particles is attained as NQ.. This mechanism provides an illuminating
cartoon for the self-organized critical traffic jams of (1.7).

(b) Virtual Particle/Antiparticle Representation Near EB

Along the bottom edge of the SCC phase diagram a related virtual
particle scheme arises. There are two ethers: 100100 · · · (ideal free flow),
and 10101010 · · · (ideal traffic jam). Virtual antiparticles travel determinis-
tically through the free flow ether with speed 1, while virtual particles do a
random walk in the free flow ether with speed 3b−2, just as they do on the
right edge. But when b is small, the virtual particles move essentially
deterministically.

It is possible to show that the traffic jams move with average speed
−2+C`b in this region, so the jams are slightly faster than isolated
virtual particles. This means that the front of a jam is tight, so that when
a < 1, virtual antiparticles are emitted at a positive linear rate. These virtual
antiparticles clean up the backs of subsequent traffic jams, keeping them
tight at the rear border.

Within the jam ether, additional virtual particle/antiparticle pairs are
created everywhere at rate b. These virtual particles move deterministically
to the right at speed 2 while the virtual antiparticles move almost determi-
nistically to the left at about speed 2. When virtual particles of opposite
type collide, they annihilate after a short delay which depends on a. Intra-
jam dynamics and a few escaping virtual antiparticles are shown in Fig. 13.

Since traffic jams move parallel to virtual antiparticles, many jam
virtual particles escape from the front and are incorporated in the free flow
ether, or occasionally create free flow virtual antiparticles, but jam virtual
antiparticles rarely escape. So the jams have an excess of virtual antipar-
ticles, each incorporating a little empty space. This gives the jams a density
slightly less than 12 , and helps explains why there can be ergodic equilibria
with r < 1

2 . When r is just below
1
2 there are more jam virtual antiparticles

than jam virtual particles, and the extra virtual antiparticles ‘‘absorb’’
stripes of free flow. Similarly, when r is just above 12 there are more jam
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Fig. 13. (0.2, 0.001) Symmetric Cruise Control on 1000 sites, from 19,600 to 19,999 updates,
with density r=0.37.

virtual particles than jam virtual antiparticles, with the virtual particles
absorbing stripes of anti-free flow.

At first glance, all of this seems rather more complicated than our
previous description along the right edge. However, the local interactions
of virtual particles and antiparticles when b is small are actually simpler, so
we suspect that a neighborhood of (1, 0), with b much smaller than 1−a,
may offer the best hope for a rigorous proof of (1.7). As suggested by our
simulations and Fig. 9, once a gets small enough the jam virtual particles
have difficulty escaping from the front, start to back up, and create solid
blocks of cars at the front of the jams. There is a battle at the border
between the block in the front of the jam and the 1010 · · · ether at the rear,
with the block winning out, so the size of the 1010 · · · ether stays the same
on average, no matter how big the jam gets. Thus the density of a large jam
is close to 1−rg, and it is no longer possible to have an ergodic equilibrium
for any density.

(c) Multiparticle Representation Near a=0, b=1

Next, we mention an intriguing asymptotic regime in the upper left
corner of S. Here the acceleration is low, so cars at the front of a jam pile
up in a solid block, and then leave at only rate a. But since there is almost
no braking (b near 1), a · · · 10101 trail follows each breakaway car until a
‘‘b-coin’’ finally fails to advance the next car, after a geometric number of
successes with success probability b. This effect creates a space-time cone
of cars and empty spaces, spreading to both the left and right at speed 1.
But the ideal jam ether, a checkerboard in space-time, is vulnerable from
within whenever a car fails to advance with (small) probability 1−b, in which
case a 1100 local configuration initiates another backlog of slow-to-start
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Fig. 14. (0.01, 0.99) Symmetric Cruise Control on 1000 sites, from 19,600 to 19,999 updates,
with density r=0.34.

cars. Since ideal jam cones are created along each vertical slice between
solid and empty regions but disrupted anywhere within the ensuing two-
dimensional cone, a stable limiting random field is attained as aQ 0, bQ 1,
with a ’ C`1−b . The appropriate scaling, which creates a curious three-
dimensional effect, is shown in Fig. 14. We conjecture that asymptotics for
the traffic equilibria nr under this scaling can be described by means of a
planar system of static and ballistic particles and antiparticles, with suitable
interactions, exponential holding times, and Poisson initial condition.

(d) Gap CA—A Unified Particle–Antiparticle Representation for TCA

Associate each gap between successive cars in the TCA with a site in a
new model, which we call the Gap CA, or GCA. If a given gap in the
original model contains n \ 0 empty spaces, then put 2−n particles at the
corresponding site in the GCA. Positive particle numbers are called par-
ticles in the GCA, negative particle numbers are called antiparticles. Thus,
at a given site in the new model, there can be either one or two particles, or
there can be arbitrarily many antiparticles, or the site can be vacant. The
dynamics for the GCA model are now easy to sort out. Note that in this
version, the negative particles don’t move, while positive particles either
stay still or move left. To recover the setting of Figs. 12 and 13, in which
antiparticles move to the right at speed 1, simply make a space-time change
of variables. For simplicity, we restrict our attention to the Cruise Control
case (d=1). It is straightforward to modify this model to accomodate the
more general model.

The rules for GCA (with any parameters a, b, c, and with d=1),
applied independently and simultaneously at the various sites during each
time step, are as follows:
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(i) If there are two particles at a site x, then one of the two particles
moves to x−1 and the other stays at x. In addition, if x+1 is vacant or
contains antiparticles, then with probability 1−a, a new particle is created
at x and an antiparticle is created at x+1. (In the latter event, x will still
contain 2 particles.)

(ii) If there is one particle at a site x, and if x−1 does not contain
two particles, then the particle at x moves to x−1 with probability 1−b
and stays at x with probability b.

(iii) If there is one particle at a site x, and if x−1 does contain two
particles, then the particle at x moves to x−1 with probability 1− c and
stays at x with probability c.

(iv) Antiparticles do not move. However, if one or more particles
and one or more antiparticles exist at the same site, then they annihilate in
pairs. (This situation arises from particle movement or from the creation of
particle/antiparticle pairs.)

In (iv), it is easy to see that at most one annihilation can occur at a site
during any one time unit. If b=c, then (ii) and (iii) can be combined into a
single rule.

Here are some remarks about the GCA, which we expect will prove
helpful for future analysis of TCA:

When r=1
3 , the average particle number per site is 0 (counting

antiparticles as negative), and when r=1
2 , the average

particle number per site is 1. (7.1)

The system goes into free flow if and only if all particles
eventually die. (7.2)

Clustering means that the system produces larger and larger
intervals which contain no particles, without going into
free flow. (7.3)

The simplest statement of our main goal for future research is: Find
(a, b) ¥S° such that clustering can be proved at some r < 1

2 , and such that
it can be shown that there is no clustering at r=1

2 . When r is small, or a is
close to 1, particle/antiparticle creation events are rare, so the particles and
antiparticles annihilate faster than they are created, at least until either
particles or antiparticles become scarce enough. If the antiparticles out-
number the particles by a significant amount, such as when r is significantly
less than 13 , this leads to free flow. But when r >

1
3 or a is not close to 1,

then there is a minimum rate at which creation events occur. Such events
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favor clustering, because particles that try to enter a large region with no
particles typically do not get very far before they get annihilated by anti-
particles.

For r close to 12 , however, there is a counterbalancing effect which is
best seen when a is close to 1 and b is close to 0. In this case, the average
particle number is 1 per site, particle/antiparticle creation events are rare,
and single particles move most of the time, but when there are double par-
ticles, only one of them moves, and a particle to the right of a double particle
also doesn’t move. The result is that particles spread out, with very few
double particles. Moreover, the number of sites with double particles
equals (the number of sites without particles)+(the number of antipar-
ticles). So vacant sites and antiparticles are necessarily rare. And whenever
intervals without particles do appear, they contain relatively few antipar-
ticles, so they are easily invaded as a result of the activity of sites with
double particles. Thus, there is no clustering. As suggested earlier, the best
place to look for a rigorous instance of (1.7) would seem to be near the
bottom right corner of phase space.

8. EVIDENCE FOR CLUSTERING IN AN IRREDUCIBLE TCA

One of our original motivations for the study of traffic prototypes
concerned the possibility of clustering and convergence to a nontrivial
mixture (1.7) in an interacting system with particle conservation, but with
no other deterministic constraints. For our purposes, say that trt is irreduc-
ible if each car stays put with positive probability, and advances with
positive probability unless blocked by a car directly ahead of it. Of course
this amounts to the assumption that a, b, c, and d are all strictly between 0
and 1, and implies that any invariant nr for t

r
t gives strictly positive prob-

ability to every possible configuration on each finite set L … Z. (By con-
trast, Cruise Control with r=1

3 has an equilibrium which attaches no
weight to an interval of 3 successive 0s.) Is there an irreducible TCA which
separates into two distinct phases starting from a suitable mr? Pictures
similar to Fig. 1 from the experiments of Nagel et al. suggested the possi-
bility of this exotic behavior among slow-to-start traffic models, but do
such simulations merely indicate equilibria with long length scales, close
in parameter space to clustering Cruise Control dynamics, yet stable
nevertheless?

Based on an extensive, albeit preliminary empirical study, we have
found compelling evidence for the possibility of phase separation (1.7) even
in some irreducible cases. From a phenomenological point of view, this is
probably the most intriguing discovery of the present study. The clustering
mechanism for these examples is very poorly understood, so our purpose
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Fig. 15. The (0.11, 0.05, 0.9, 0.9) Traffic Cellular Automaton on 1,000 sites, from 79,600 to
79,999 updates, with density r=0.3.

here is merely to identify a promising parameter set and describe very briefly
the observed behavior. Since we know of no other particle conserving irre-
ducible lattice interaction which clusters, and since various of Nagel’s simu-
lations and the recent study [RSS] warn of subtle finite-size effects, a much
more thorough analysis is planned.

The clearest indication of irreducible TCA clustering we have found
occurs in a small neighborhood of the phase point (0.11, 0.05, 0.9, 0.9), and
with traffic densities around r=0.3. Figure 15 shows one simulation with
those parameter values on an array of 1,000 sites. Note that traffic is about
a 50–50 mix of ‘‘quasi free flow’’ and an exotic synchronized jam state.
Occasional mini-jams can be seen attempting to nucleate within the low-
density phase, a consequence of irreducibility, but these are evidently
unstable. Also, the high-density phase is characterized by thick ‘‘quasi anti-
free flow’’ regions which seem to somehow play a crucial role in the clustering
process. We have run a great many simulations with these and nearby
parameters, on array sizes up to L=20,000, for hundreds of thousands or
even millions of updates. In all cases, the traffic has slowly separated in the
manner of Fig. 14, and then retained clear and stable evidence of the dis-
tinct phases thereafter. Thus, it appears quite possible that even irreducible
slow-to-start dynamics can give rise to traffic jams of arbitrarily large size.

9. ELECTRONIC RESOURCES

The analysis of Traffic CA system behavior described in this paper
would have been impossible without an efficient and flexible simulation
engine. Our first experiments, vital for ‘‘proof of concept,’’ were carried out
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using an in-house, dedicated program written by Janko Gravner. Once a
more systematic study was indicated, we were fortunate to make the
(virtual) acquaintance of Mirek Wójtowicz, whose state-of-the-art general
cellular automaton program MCell [Wój] supports hundreds of fascinat-
ing one-dimensional and two-dimensional CA rules. Over the past year we
have worked with Mirek on a daily basis to develop a tool set suitable for
the visual and numerical study of TCA, but also applicable to his entire
library of interacting systems. The latest version of MCell includes a ready-
to-run Traffic CA experiment.

We urge our readers to explore the resources and links of a companion
Web page:

http://psoup.math.wisc.edu/traffic/

which provides additional graphics, instructions for downloading MCell,
and a library of Mcell experiments illustrating many of the features of TCA
dynamics discussed here. Indeed, a far better understanding of the subtle-
ties of emergent traffic jams will be achieved by parsing those computer-
based materials in parallel with this account.
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